PHYSICAL / INORGANIC CHEMISTRY

DPP No. 40

Total Marks: 47

Max. Time: 52 min.

Topic : p-block elements (Halogens and Noble gas)

Topic . p-block elements (nalogens and Noble gas)					
Type of Questions Single choice Objective ('-1' negative marking) Q.1 to Q.5 Comprehension ('-1' negative marking) Q.6 to Q.8 Subjective Questions ('-1' negative marking) Q.9 Match the Following (no negative marking) Q.10 to Q.11 Short Subjective Questions ('-1' negative marking) Q.10 (3 marks, 3 min.) (4 marks, 5 min.) (8 marks, 10 min.)					M.M., Min. [15, 15] [9, 9] [4, 5] [16, 20] [3, 3]
1.	(a) F ₂ is formed by rea (A) SbF ₅	acting K ₂ MnF ₆ with (B) MnF ₃	(C) KSbF ₆	(D) MnF _s	
	(b) Which of the follow (A) HOF	wing product is formed	, when dilute alkali (C) O ₂ F ₂	reacts with fluorine ?	
2.	(a) Which one is the a	nhydride of HCIO ₄ (B) CIO ₂	(C) Cl ₂ O ₆	(D) Cl ₂ O ₇	
	(b) When dry chlorine chlorine is obtained? (A) CIO ₂	is passed through silv (B) Cl ₂ O	er chlorate heated (C) Cl ₂ O ₃	to 90°C, then which of th (D) Cl ₂ OS	e oxide of
3.	(A) It is used to product (B) It is used as a cryc	-	Il superconducting ig out experiments	magnets	mable
4.	$\mathbf{S_2}$: XeF ₂ , XeF ₄ and Xe $\mathbf{S_3}$: XeF ₂ , XeF ₄ and Xe	eF _。 are colourless crys eF _。 are readily hydroly	talline solids and s sed.	de an inert atmosphere. ublime readily at 298K. nic species and fluoride io (D) FTFT	on donors to form
	\mathbf{S}_2 : XeF ₂ is not a bette \mathbf{S}_3 : Xe, Kr and Ne all	form clatherate compo	ounds.	al molecular structure. nates in fluoride and hypo (D) FTFT	ofluorite.
5.	Statement-2: Hydrod (A) Statement-1 is Tru (B) Statement-1 is Tru (C) Statement-1 is Tru	hloric acid produces h	ydrogen gas with ir ; Statement-2 is a (; Statement-2 is No e	de with hydrochloric acid on. correct explanation for Si OT a correct explanation	tatement-1.

(b) Statement-1: XeF₆ reacts with small quantities of water to form XeOF₄.

Statement-2: XeF_e reacts with glass and form XeOF₄.

- (A) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1.
- (B) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
- (C) Statement-1 is True, Statement-2 is False
- (D) Statement-1 is False, Statement-2 is True
- (c) Statement-1: Noble gases have positive electron gain enthalpy.

Statement-2: Noble gases have highest value of ionization enthalpy.

- (A) If both statement-1 and statement-2 are true and statement-2 is a correct explanation of statement-1.
- (B) If both statement-1 and statement-2 are true and statement-3 is not a correct explanation of statement-1.
- (C) If statement-1 is true but statement-2 is false.
- (D) If statement-1 is false but statement-2 is true.

Comprehension #1 (Q.6 to Q.8)

The chemical reactivity of noble gases involves the loss of electrons and hence it can form compounds with highly electronegative elements like F and O. Although Xe forms several fluorides, Xenon tetrafluoride is the most important among fluorides. The various compounds of xenon involve xenon in first second or third excited states.

- 6. The type of hybridisation and number of lone pair(s) of electrons of Xe in XeOF, respectively are:
 - (A) sp3d and 1
- (B) sp3d and 2
- (C) sp³d² and 1
- (D) sp^3d^2 and 2.
- 7. The type of hybridisation and shape of XeF, respectively are
 - (A) sp³dand angular
- (B) sp³d and pyramidal (C) sp³d and linear
- (D) sp and linear

- 8. XeF₄ and XeF₆ are excepted to be
 - (A) oxidising
- (B) reducing
- (C) unreactive
- (D) strongly basic.

- 9. Complete the following reactions
 - (A) SiO_2 (s) + F_2 (g) \longrightarrow

- (B) Na₂ S₂O₃ + H₂O + CI₂ \longrightarrow
- (C) $I_2 + H_2O + CI_2$ (excess) \longrightarrow
- (D) $IO_3^- + HSO_3^- \longrightarrow$

- (E) KMnO₁ + HCl →
- 10. Match the following:

Column-I

- (A) $XeF_4 + H_2O \longrightarrow$
- (B) [HXeO₄]⁻ + 2OH⁻ →
- (C) $H_2O + F_2$ (2:2 by mole) \longrightarrow
- (D) NOCI + $O_2 \longrightarrow$

Column-II

- (p) disproportionation
- (q) one of the products is a gas which is paramagnetic
- (r) one of the products is used in light bulbs
- (s) one of the products is corrosive to glass and is stored in wax-lined bottles.

- 11. Column I
 - (A) XeF
 - (B) XeOF₂
 - (C) XeOF
 - (D) XeO₂F₂

- Column II
- (p) sp³d hybridisation
- (q) one lone pair
- (r) sp³d² hybridisation
- (s) sp³d³ hybridisation
- (t) See-saw shape
- 12. Find the sum of average oxidation number of S in H₂SO₅ (peroxy monosulphuric acid) and Na₂S₂O₃ (sodium thiosulphate).

Answer Key

DPP No. # 40

(C)

- 1. (a) (A) (b) (B) 2.
- (a) (D) (b) (A) 3.

- 4.
- (a) (C) (b) (A)

- 5. (a) (A) (b) (B) (c) (B)
- 6. (C)
- 7. (C)
- 8. (A)

- 9. (A) $SiO_2 + 2F_2 \longrightarrow SiF_4 + O_2$.
 - (B) Na₂S₂O₃ + H₂O + Cl₂ → Na₂SO₄ + 2HCl + ↓
 - (C) I_2 + $6H_2O$ + $5CI_2$ \longrightarrow $2HIO_3$ + 10 HCI
 - (D) 2 $10_3^- + 5HSO_3^- \longrightarrow 3HSO_4^- + 2SO_4^{2-} + I_2^- + H_2O$
 - (E) 2KMnO₄ + 16HCl _____ 2KCl + 2MnCl₂ + 5Cl₂ + SH₂O.
- **10.** (A-p,q,r,s); (B-p,q,r); (C-q,s); (D-q)
- **11**. (A-q
- (A-q, s); (B-p); (C-q, r); (D-p, q, t)
- 12.

8

Hints & Solutions

PHYSICAL / INORGANIC CHEMISTRY

DPP No. #40

- 1. (b) 2F₂ + 2NaOH (dil) OF₂ (s) + 2NaF + H₂O
- 2. $2AgCIO_3 + CI_2 \longrightarrow 2AgCI \downarrow + 3CIO_2$.
- (a) S, and S, are correct statements.

$$S_3: 2XeF_2(s) + H_2O(\ell) \longrightarrow 2Xe(g) + 4HF(aq) + O_2(g)$$

 $6XeF_4 + 12H_2O \longrightarrow 4Xe + XeO_3 + 24HF + 3O_2$ Complete hydrolysis
 $XeF_6 + 3H_2O \longrightarrow XeO_3 + 6HF$

$$\begin{split} \mathbf{S_4}: & \quad \mathbf{XeF_2} + \mathbf{PF_5} \longrightarrow [\mathbf{XeF}]^+ [\mathbf{PF_6}]^- \\ & \quad \mathbf{XeF_4} + \mathbf{SbF_5} \longrightarrow [\mathbf{XeF_3}]^+ [\mathbf{SbF_6}]^- \\ & \quad \mathbf{XeF_6} + \mathbf{MF} \longrightarrow \mathbf{M}^+ [\mathbf{XeF_7}]^- \\ & \quad \mathbf{M} = \mathbf{Na}, \, \mathbf{K}, \, \mathbf{Rb} \, \, \mathbf{or} \, \, \mathbf{Cs} \end{split}$$

(b) S, : Statement is correct

S,: Statement is false

$$2e^- + 2H^+ + XeF_2 \longrightarrow Xe + 2HF$$

SRP = +2.64V.

S₄:Statement is false as He atoms being smaller do not trapp in the cavities formed by water molecules (ice).

- $\mathbf{S_4}$: Statement is false $\mathbf{2F_2}$ + $\mathbf{2NaOH}$ \longrightarrow $\mathbf{OF_2(g)}$ + $\mathbf{2NaF}$ + $\mathbf{H_2O}$
- (a) Fe + 2HCI ---- FeCl₂ + H₂ 5. Liberation of hydrogen prevents the formation of ferric chloride.

(b)
$$XeF_6 + H_2O \longrightarrow XeOF_4 + 2HF$$

$$2XeF_{6} + SiO_{2}$$
 (from glass) $\longrightarrow 2XeOF_{4} + SiF_{4}$

- (A) XeF₄ + 6H₂O ---- 2Xe + XeO₃ + 3/2O₂ + 12HF 10.
 - (B) 2[HXeO₄] + 2OH → [XeO₆] + Xe + O₂ + 2H₂O
 - (C) $3H_2O + 3F_2 \longrightarrow 6HF^- + O_3$ $2H_2O + 2F_2 \longrightarrow 4HF + O_2$ (D) $2NOCI + O_2 \longrightarrow 2NO_2 + CI_2$
- H₂SO₅ and Na₂S₂O₃ 12.

